ON A NEW SUBCLASS OF MEROMORPHIC HARMONIC FUNCTIONS WITH FIXED RESIDUE α

R. Ezhilarasi, T.V. Sudharsan, K.G. Subramanian, D. Breaz

Abstract

In this paper, we obtain some properties such as coefficient conditions, distortion theorem and extreme points for a certain subclass of meromorphic harmonic functions with fixed residue $\alpha, 0 \leq \alpha<1$.

2000 Mathematics Subject Classification: 30C45.
Keywords: Univalent functions, harmonic functions, meromorphic functions and extreme points.

1. Introduction

The important study initiated by Clunie and Sheil-Small [3] on the class H consisting of complex valued harmonic sense-preserving univalent functions f in a simply connected domain $D \subseteq C$ defined on the open unit disc $\Delta=\{z:|z|<1\}$ and normalized by $f(0)=f_{z}(0)-1=0$ formed the basis for various studies related to different subclasses of harmonic univalent functions. It is known that [3] each function $f \in H$ can be expressed as $f=h+\bar{g}$, where h and g are analytic in D. In fact H reduces to g, the class of normalized univalent functions if the co-analytic part of f is zero. A compact survey on harmonic univalent functions is given by Ahuja [1].

Jinxi Ma [8] considered the class S_{p} of functions f which are meromorphic and univalent in the unit disc Δ normalized by $f(0)=0, f^{\prime}(0)=1$ and $f(p)=\infty$, with $0<p<1$.

Observe that in the annulus $\{z: p<|z|<1\}$ each function h in S_{p} admits an expansion written as

$$
\begin{equation*}
h(z)=\frac{\alpha}{z-p}+\sum_{n=1}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

where $\alpha=\operatorname{Res}(f, p)$ with $0<\alpha \leq 1, z \in \Delta \backslash\{p\}$.
Jinxi Ma [8] and also Ghanim and Darus $[4,6]$ have made use of the function h given in (1) and studied some properties.

Let $H S_{p}$ denote the class of functions $f=h+\bar{g}$ that are harmonic univalent and sense preserving in the punctured unit disk $\Delta \backslash\{p\}$.

For $f=h+\bar{g}$, we may write the analytic function h as in (1) and g as

$$
g(z)=\sum_{n=1}^{\infty} b_{n} z^{n} .
$$

Then we have

$$
\begin{equation*}
f(z)=h(z)+\overline{g(z)}=\frac{\alpha}{z-p}+\sum_{n=1}^{\infty} a_{n} z^{n}+\overline{\sum_{n=1}^{\infty} b_{n} z^{n}} \tag{2}
\end{equation*}
$$

where $\alpha=\operatorname{Res}(f, p)$, with $0<\alpha \leq 1, z \in \Delta \backslash\{p\}$.
Let $\overline{H S}_{p}$ be a subclass of $H S_{p}$ consisting of function of the form

$$
\begin{equation*}
f(z)=h(z)+\overline{g(z)}=\frac{\alpha}{z-p}+\sum_{n=1}^{\infty} a_{n} z^{n}+\overline{\sum_{n=1}^{\infty} b_{n} z^{n}}, \quad\left(a_{n}, b_{n} \geq 0\right) \tag{3}
\end{equation*}
$$

where $\alpha=\operatorname{Res}(f, p)$, with $0<\alpha \leq 1, z \in \Delta \backslash\{p\}$, which are univalent harmonic in the punctured unit disk $\Delta \backslash\{p\}$. The functions h and g are analytic in $\Delta \backslash\{p\}$ and Δ respectively and h has a simple pole at the point p with residue α.

For $\alpha=1$ and $p=0$, the function f defined in (3) was studied by Bostanci, Yalcin and Öztürk [2].

In $[4,5,6]$ Ghanim et al. defined the operator I^{k} on the class $H S_{p}$ as follows:

$$
\begin{align*}
& I^{0} f(z)=f(z), \\
& I^{k} f(z)=I^{k} h(z)+\overline{I^{k} g(z)}, \quad k=1,2,3, \ldots, \tag{4}
\end{align*}
$$

where,

$$
I^{k} h(z)=z\left(I^{k-1} h(z)\right)^{\prime}+\frac{\alpha(2 z-p)}{(z-p)^{2}}=\frac{\alpha}{z-p}+\sum_{n=1}^{\infty} n^{k} a_{n} z^{n}
$$

and

$$
I^{k} g(z)=z\left(I^{k-1} g(z)\right)^{\prime}=\sum_{n=1}^{\infty} n^{k} b_{n} z^{n}
$$

Motivated by the earlier works of $[2,6,7,9]$, we now introduce a new subclass $H S_{p}^{*}(k, \alpha, \beta, \mu)$ using the differential operator I^{k}.

Definition 1. A function $f \in H S_{p}^{*}(k, \alpha, \beta, \mu)$, if it satisfies

$$
\begin{equation*}
\left|\frac{H(z)}{\mu H(z)+(1-\mu)}+1\right| \leq\left|\frac{H(z)}{\mu H(z)+(1-\mu)}+2 \beta-1\right| \tag{5}
\end{equation*}
$$

where $H(z)=\frac{z\left(I^{k} h(z)\right)^{\prime}+\overline{z\left(I^{k} g(z)\right)^{\prime}}}{I^{k} f(z)},\left(k \in N_{0}=N \cup\{0\}\right), 0 \leq \beta<1,0 \leq \mu<1$ and for all z in $\Delta \backslash\{p\}$.

Remark 1. $H S_{p}^{*}(k, \alpha, \beta, 0)=S H_{p}^{*}(k, \alpha, \beta)[6]$.
Also

$$
H S_{p}^{*}[k, \alpha, \beta, \mu]=H S_{p}^{*}(k, \alpha, \beta, \mu) \cap \overline{H S}_{p}
$$

We now obtain the coefficient estimates for the classes $H S_{p}^{*}(k, \alpha, \beta, \mu)$ and $H S_{p}^{*}[k, \alpha, \beta, \mu]$.

2. Main Results

A sufficient coefficient condition for functions analytic in $\Delta \backslash\{p\}$ to be in $H S_{p}^{*}(k, \alpha, \beta, \mu)$ is now derived.

Theorem 1. Let $f(z)=h(z)+\overline{g(z)}$ be given by (2). If

$$
\begin{align*}
& \sum_{n=1}^{\infty} n^{k}[(n+\beta)+\beta(n-1) \mu](1-p)^{2}\left(\left|a_{n}\right|+\left|b_{n}\right|\right) \\
& \leq \alpha(1-\beta)[(1-p)-\mu(2-p)] \tag{6}
\end{align*}
$$

where $0 \leq \beta<1, k \in N_{0}$, then f is sense preserving in $\Delta \backslash\{p\}$ and $f \in H S_{p}^{*}(k, \alpha, \beta, \mu)$.

Proof. Assume that (6) holds true for $0 \leq \beta<1$. Then by (5) we have

$$
\left|\frac{H(z)}{\mu H(z)+(1-\mu)}+1\right|<\left|\frac{H(z)}{\mu H(z)+(1-\mu)}+2 \beta-1\right|
$$

This gives

$$
\begin{aligned}
& \left|\left[z\left(I^{k} h(z)\right)^{\prime}+\overline{z\left(I^{k} g(z)\right)^{\prime}}\right](1+\mu)+I^{k} f(z)(1-\mu)\right| \\
& \quad<\left|\left[z\left(I^{k} h(z)\right)^{\prime}+\overline{z\left(I^{k} g(z)\right)^{\prime}}\right](1+\mu(2 \beta-1))+(2 \beta-1)(1-\mu) I^{k} f(z)\right|
\end{aligned}
$$

Let

$$
\begin{aligned}
M(z) & =\left|\left[z\left(I^{k} h(z)\right)^{\prime}+\overline{z\left(I^{k} g(z)\right)^{\prime}}\right](1+\mu)+I^{k} f(z)(1-\mu)\right| \\
& -\left|\left[z\left(I^{k} h(z)\right)^{\prime}+\overline{z\left(I^{k} g(z)\right)^{\prime}}\right](1+\mu(2 \beta-1))+(2 \beta-1)(1-\mu) I^{k} f(z)\right| .
\end{aligned}
$$

Then, for $|z|=r$, and since $|z-p| \geq|z|-p=r-p$, we have

$$
\begin{aligned}
M(z)= & \left\lvert\,(1+\mu)\left[-\frac{\alpha z}{(z-p)^{2}}+z \sum_{n=1}^{\infty} n^{k+1} a_{n} z^{n-1}+z \sum_{n=1}^{\infty} n^{k+1} \overline{b_{n} z^{n-1}}\right]\right. \\
& \left.+(1-\mu)\left[\frac{\alpha}{z-p}+\sum_{n=1}^{\infty} n^{k} a_{n} z^{n}+\sum_{n=1}^{\infty} n^{k} \overline{b_{n} z^{n}}\right] \right\rvert\, \\
& -\left\lvert\,(1+\mu(2 \beta-1))\left[-\frac{\alpha z}{(z-p)^{2}}+z \sum_{n=1}^{\infty} n^{k+1} a_{n} z^{n-1}+z \sum_{n=1}^{\infty} n^{k+1} \overline{b_{n} z^{n-1}}\right]\right. \\
& \left.+(2 \beta-1)(1-\mu)\left[\frac{\alpha}{z-p}+\sum_{n=1}^{\infty} n^{k} a_{n} z^{n}+\sum_{n=1}^{\infty} n^{k} \overline{b_{n} z^{n}}\right] \right\rvert\, .
\end{aligned}
$$

Also we notice that

$$
\begin{aligned}
M(r) & \leq \frac{\alpha p+\mu(2 \alpha r-\alpha p)}{(r-p)^{2}}+\sum_{n=1}^{\infty} n^{k}[(n+1)+\mu(n-1)]\left[\left|a_{n}\right| r^{n}+\left|b_{n}\right| r^{n}\right] \\
& -\frac{[2 \alpha r-2 \alpha \beta r+2 \alpha \beta p-\alpha p+\mu[4 \alpha \beta r-2 \alpha r-2 \alpha \beta p+\alpha p]]}{(r-p)^{2}} \\
& +\sum_{n=1}^{\infty} n^{k}[(n+2 \beta-1)+\mu(2 \beta-1)(n-1)]\left[\left|a_{n}\right| r^{n}+\left|b_{n}\right| r^{n}\right] \\
& =-\frac{2 \alpha(1-\beta)}{r-p}+\frac{2 \alpha \mu(2 r-p)(1-\beta)}{(r-p)^{2}} \\
& +\sum_{n=1}^{\infty} n^{k}[2(n+\beta)+2 \beta(n-1) \mu]\left[\left|a_{n}\right|+\left|b_{n}\right|\right] r^{n} .
\end{aligned}
$$

In other words

$$
\begin{array}{r}
(r-p)^{2} M(r) \leq \sum_{n=1}^{\infty} n^{k}[2(n+\beta)+2 \beta(n-1) \mu]\left[\left|a_{n}\right|+\left|b_{n}\right|\right](r-p)^{2} r^{n} \\
-2 \alpha(1-\beta)(r-p)+2 \alpha \mu(2 r-p)(1-\beta) \tag{7}
\end{array}
$$

The inequality in (7) holds true for all $r(0 \leq r<1)$. Therefore letting $r \rightarrow 1$ in (7), we obtain

$$
\begin{array}{r}
(1-p)^{2} M(r) \leq \sum_{n=1}^{\infty} 2 n^{k}[(n+\beta)+\beta(n-1) \mu](1-p)^{2}\left[\left|a_{n}\right|+\left|b_{n}\right|\right] \\
-2 \alpha(1-\beta)(1-p)+2 \alpha \mu(2-p)(1-\beta)
\end{array}
$$

By the hypothesis (6), it follows that (5) holds, so that $f \in H S_{p}^{*}(k, \alpha, \beta, \mu)$. We observe that f is sense-preserving in $\Delta \backslash\{p\}$. This is because

$$
\begin{aligned}
\left|h^{\prime}(z)\right| & \geq \frac{1}{|z-p|^{2}}-\sum_{n=1}^{\infty} n\left|a_{n}\right||z|^{n-1} \\
& \geq \frac{1}{|z|^{2}}-\sum_{n=1}^{\infty} n\left|a_{n}\right||z|^{n-1} \\
& \geq \frac{1}{r^{2}}-\sum_{n=1}^{\infty} n\left|a_{n}\right| r^{n-1} \\
& \geq 1-\sum_{n=1}^{\infty} n\left|a_{n}\right| \\
& \geq 1-\sum_{n=1}^{\infty} n[(n+\beta)+\beta(n-1) \mu](1-p)^{2}\left|a_{n}\right| \\
& \geq \sum_{n=1}^{\infty} n[(n+\beta)+\beta(n-1) \mu](1-p)^{2}\left|b_{n}\right| \\
& \geq \sum_{n=1}^{\infty} n\left|b_{n}\right| \geq \sum_{n=1}^{\infty} n\left|b_{n}\right||z|^{n-1} \geq\left|g^{\prime}(z)\right| .
\end{aligned}
$$

Hence the theorem.
Letting $k=\beta=0$ and $p \rightarrow 0$ in Theorem 1, then we have the next corollary:
Corollary 2. If $f(z)=h(z)+\overline{g(z)}$ is of the form (2) and satisfies the condition

$$
\sum_{n=1}^{\infty} n\left(\left|a_{n}\right|+\left|b_{n}\right|\right) \leq \alpha(1-2 \mu)
$$

then f is sense preserving in $\Delta \backslash\{0\}$ and $f \in H S_{0}^{*}(0, \alpha, 0, \mu)$.
Remark 2. Let $k=\beta=\mu=0$ and $p \rightarrow 0$ in Theorem 1, then we have a result obtained by Ghanim and Darus [6].

Remark 3. Let $\mu=k=\beta=0, \alpha=1$ and $p \rightarrow 0$ in Theorem 1, then we have a result obtained by Bostanci, Yalcin and Öztürk [2].

Letting $k=1, \beta=0$ and $p \rightarrow 0$ in Theorem 1, then we have the next corollary:
Corollary 3. If $f(z)=h(z)+\overline{g(z)}$ is of the form (2) and satisfies the condition

$$
\sum_{n=1}^{\infty} n^{2}\left(\left|a_{n}\right|+\left|b_{n}\right|\right) \leq \alpha(1-2 \mu)
$$

then f is sense preserving in $\Delta \backslash\{0\}$ and $f \in H S_{0}^{*}(1, \alpha, 0, \mu)$.
Remark 4. Let $k=1, \beta=0, \alpha=1, \mu=0$ and $p \rightarrow 0$ in Theorem 1, then we have a result due to Bostanci, Yalcin and Öztürk [2].

Next we obtain a necessary and sufficient condition for a function $f \in \overline{H S}_{p}$ given by (3) to be in $H S_{p}^{*}[k, \alpha, \beta, \mu]$.
Theorem 4. Let $f \in \overline{H S}_{p}$ be given by (3). Then $f \in H S_{p}^{*}[k, \alpha, \beta, \mu]$ if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k}[(n+\beta)+\beta(n-1) \mu](1-p)^{2}\left(a_{n}+b_{n}\right) \leq \alpha(1-\beta)[(1-p)-\mu(2-p)] \quad\left(k \in N_{0}\right) \tag{8}
\end{equation*}
$$

is satisfied. The estimate (8) is sharp and the equality is attained for the function
$f(z)=\frac{\alpha}{z-p}+\frac{\alpha(1-\beta)[(1-p)-\mu(2-p)]}{n^{k}[(n+\beta)+\beta(n-1) \mu](1-p)^{2}} z^{n}+\frac{\alpha(1-\beta)[(1-p)-\mu(2-p)]}{n^{k}[(n+\beta)+\beta(n-1) \mu](1-p)^{2}} \bar{z}^{n}$.
Proof. The if part follows from Theorem 1. Hence, it suffices to show that the 'only if' part is true.

Assume that $f \in H S_{p}^{*}[k, \alpha, \beta, \mu]$. Then

$$
\left.\begin{align*}
& \left|\frac{\frac{H(z)}{\mu H(z)+(1-\mu)}+1}{\frac{H(z)}{\mu H(z)+(1-\mu)}+2 \beta-1}\right| \\
& =\left\lvert\, \frac{\frac{-\alpha p-\alpha \mu(2 z-p)}{(z-p)^{2}}+\sum_{n=1}^{\infty} n^{k}[(n+1)+\mu(n-1)]\left(a_{n} z^{n}+\overline{b_{n} z^{n}}\right)}{\frac{-2 \alpha z+2 \alpha \beta z-2 \alpha \beta p+\alpha p-\mu[4 \alpha \beta z-2 \alpha z-2 \alpha \beta p+\alpha p]}{(z-p)^{2}}}\right. \\
& \quad+\sum_{n=1}^{\infty} n^{k}[(n+2 \beta-1)+\mu(2 \beta-1)(n-1)]\left[a_{n} z^{n}+\overline{b_{n} z^{n}}\right] \tag{9}
\end{align*} \right\rvert\,
$$

$z \in \Delta \backslash\{p\}$.
Since $\operatorname{Re}(z) \leq|z|$ for all z it follows from (9) that

$$
\left.\begin{array}{l}
\operatorname{Re}\left\{\frac{\frac{-\alpha p-\alpha \mu(2 z-p)}{(z-p)^{2}}+\sum_{n=1}^{\infty} n^{k}[(n+1)+\mu(n-1)]\left(a_{n} z^{n}+\overline{b_{n} z^{n}}\right)}{\frac{-2 \alpha[(1-\beta) z+\beta p]+\alpha p-\mu[4 \alpha \beta z-2 \alpha z-2 \alpha \beta p+\alpha p]}{(z-p)^{2}}}\right\} \\
\quad+\sum_{n=1}^{\infty} n^{k}[(n+2 \beta-1)+\mu(2 \beta-1)(n-1)]\left[a_{n} z^{n}+\overline{b_{n} z^{n}}\right] \tag{10}
\end{array}\right\},
$$

Choosing the values z on the real axis and upon clearing the denominator in (10) and letting $z \rightarrow 1$ through real values, we obtain

$$
\begin{aligned}
& \sum_{n=1}^{\infty} n^{k}[(n+1)+\mu(n-1)](1-p)^{2}\left(a_{n}+b_{n}\right) \\
& \leq 2 \alpha(1-\beta)(1-p)-2 \alpha \mu(2-p)(1-\beta) \\
& -\sum_{n=1}^{\infty} n^{k}[(n+2 \beta-1)+\mu(2 \beta-1)(n-1)](1-p)^{2}\left(a_{n}+b_{n}\right)
\end{aligned}
$$

which immediately yields the required condition (8).

3. Distortion Theorem

We now prove the following distortion theorem for functions in the class $H S_{p}^{*}[k, \alpha, \beta, \mu]$.

Theorem 5. If the function f defined by (3) is in the class $H S_{p}^{*}[k, \alpha, \beta, \mu]$, then for $|z|=r$, we have

$$
|f(z)| \leq \frac{\alpha}{r-p}+\frac{\alpha(1-\beta)(1-p)-\alpha \mu(2-p)(1-\beta)}{(1+\beta)(1-p)^{2}} r
$$

Proof. Let $f \in H S_{p}^{*}[k, \alpha, \beta, \mu]$, taking the absolute value of f we obtain

$$
\begin{aligned}
|f(z)| & \leq \frac{\alpha}{r-p}+\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right) r^{n} \\
& \leq \frac{\alpha}{r-p}+\frac{[\alpha(1-\beta)(1-p)-\alpha \mu(2-p)(1-\beta)]}{(1+\beta)(1-p)^{2}} \\
& \quad \sum_{n=1}^{\infty} n^{k} \frac{[(n+\beta)+\beta(n-1) \mu](1-p)^{2}}{\alpha(1-\beta)(1-p)-\alpha \mu(2-p)(1-\beta)}\left(a_{n}+b_{n}\right) r \\
& \leq \frac{\alpha}{r-p}+\frac{\alpha(1-\beta)(1-p)-\alpha \mu(2-p)(1-\beta)}{(1+\beta)(1-p)^{2}} r
\end{aligned}
$$

The functions

$$
f(z)=\frac{\alpha}{z-p}+\frac{\alpha(1-\beta)(1-p)-\alpha \mu(2-p)(1-\beta)}{(1+\beta)(1-p)^{2}} z
$$

and

$$
f(z)=\frac{\alpha}{z-p}+\frac{\alpha(1-\beta)(1-p)-\alpha \mu(2-p)(1-\beta)}{(1+\beta)(1-p)^{2}} \bar{z}
$$

for $0 \leq \alpha<1$ and $0 \leq \beta<1,0 \leq \mu<1$ show that the bound given in Theorem 5 are sharp in $\Delta \backslash\{p\}$.

Theorem 6. Let

$$
h_{0}(z)=\frac{\alpha}{z-p}, \quad g_{0}(z)=0
$$

for $n=1,2,3, \ldots$,

$$
\begin{equation*}
h_{n}(z)=\frac{\alpha}{z-p}+\frac{\alpha(1-\beta)(1-p)-\alpha \mu(2-p)(1-\beta)}{n^{k}[(n+\beta)+\beta(n-1) \mu](1-p)^{2}} z^{n} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{n}(z)=\frac{\alpha(1-\beta)(1-p)-\alpha \mu(2-p)(1-\beta)}{n^{k}[(n+\beta)+\beta(n-1) \mu](1-p)^{2}} \bar{z}^{n} \tag{12}
\end{equation*}
$$

Then $f \in H S_{p}^{*}[k, \alpha, \beta, \mu]$ if and only if it can be expressed in the form

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty}\left(\lambda_{n} h_{n}+\gamma_{n} g_{n}\right) \tag{13}
\end{equation*}
$$

where $\lambda_{n} \geq 0, \gamma_{n} \geq 0$ and $\sum_{n=0}^{\infty}\left(\lambda_{n}+\gamma_{n}\right)=1$. In particular, the extreme points of $H S_{p}^{*}[k, \alpha, \beta, \mu]$ are $\left\{h_{n}\right\}$ and $\left\{g_{n}\right\}$.

Proof. From (11), (12) and (13), we have

$$
\begin{aligned}
f(z)= & \sum_{n=0}^{\infty}\left(\lambda_{n} h_{n}+\gamma_{n} g_{n}\right) \\
= & \sum_{n=0}^{\infty}\left(\lambda_{n}+\gamma_{n}\right) \frac{\alpha}{z-p}+\sum_{n=1}^{\infty} \frac{\alpha(1-\beta)(1-p)-\alpha \mu(2-p)(1-\beta)}{n^{k}[(n+\beta)+\beta(n-1) \mu](1-p)^{2}} \lambda_{n} z^{n} \\
& +\sum_{n=0}^{\infty} \frac{\alpha(1-\beta)(1-p)-\alpha \mu(2-p)(1-\beta)}{n^{k}[(n+\beta)+\beta(n-1) \mu](1-p)^{2}} \gamma_{n} \bar{z}^{n}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \sum_{n=1}^{\infty} n^{k}[(n+\beta)+\beta(n-1) \mu](1-p)^{2} \frac{\lambda_{n}}{n^{k}[(n+\beta)+\beta(n-1) \mu](1-p)^{2}} \\
& +\sum_{n=0}^{\infty} n^{k}[(n+\beta)+\beta(n-1) \mu](1-p)^{2} \frac{\gamma_{n}}{n^{k}[(n+\beta)+\beta(n-1) \mu](1-p)^{2}} \\
& =\sum_{n=1}^{\infty}\left(\lambda_{n}+\gamma_{n}\right)-\lambda_{0}=1-\lambda_{0} \leq 1
\end{aligned}
$$

So $f \in H S_{p}^{*}[k, \alpha, \beta, \mu]$.
Conversely, suppose that $f \in H S_{p}^{*}[k, \alpha, \beta, \mu]$. Set

$$
\lambda_{n}=\frac{n^{k}[(n+\beta)+\beta(n-1) \mu](1-p)^{2}}{\alpha(1-\beta)(1-p)-\alpha \mu(2-p)(1-\beta)} a_{n}, \quad n \geq 1
$$

and

$$
\gamma_{n}=\frac{n^{k}[(n+\beta)+\beta(n-1) \mu](1-p)^{2}}{\alpha(1-\beta)(1-p)-\alpha \mu(2-p)(1-\beta)} b_{n}, \quad n \geq 0
$$

Then, by Theorem 4, $0 \leq \lambda_{n} \leq 1(n=1,2, \ldots)$ and $0 \leq \gamma_{n} \leq 1$, ($n=0,1,2, \ldots$).
Define

$$
\lambda_{0}=1-\sum_{n=1}^{\infty} \lambda_{n}-\sum_{n=0}^{\infty} \gamma_{n}
$$

and note that, by Theorem $4, \lambda_{0} \geq 0$.
Consequently, we obtain

$$
f(z)=\sum_{n=0}^{\infty}\left(\lambda_{n} h_{n}+\gamma_{n} g_{n}\right)
$$

as required.

References

[1] O.P. Ahuja, Planar harmonic univalent and related mappings, JIPAM, 6, No. 4 (2005), Article 122, 18pp.
[2] H. Bostanci, S. Yalcin, M. Öztürk, On meromorphically harmonic starlike functions with respect to symmetric conjugate points, J. Math. Anal. Appl., 328, No. 1 (2007), 370-379.
[3] J. Clunie, T. Sheil-Small, Harmonic Functions, Ann. Acad. Sci. Fenn. Ser. A, 1. Math, 9 (1984), 3-25.
[4] F. Ghanim and M. Darus, On certain subclass of meromorphic univalent functions with fixed residue α, Far East J. Math. Sci. (FJMS), 26, No. 1 (2007), 195-207.
[5] F. Ghanim and M. Darus, A new subclass of uniformly starlike and convex functions with negative coefficients II, International J. of Pure and Appl. Maths., Vol. 45, No. 4 (2008), 559-572.
[6] F. Ghanim, M. Darus and G.S. Sălăgean, On certain subclass of meromorphic harmonic functions with fixed residue α, Bulletin of Mathematical Analysis and Applications, Vol. 2, Issue 4 (2010), 122-129.
[7] J.M. Jahangiri and H. Silverman, Harmonic univalent functions with varying arguments, Int. J. Appl. Math., 8, No. 3 (2002), 267-275.
[8] Jinxi Ma, Extreme points and minimal outer area problem for meromorphic univalent functions, J. Math. Anal. Appl., 220, No. 2 (1998), 769-773.
[9] G. Schober, Univalent Functions - Selected Topics, Lecture Notes in Math., Vol. 478, Springer-Verlag, New York and Berlin, 1975.
R. Ezhilarasi, T.V. Sudharsan

Department of Mathematics,
SIVET College, Chennai - 600 073, India
email: ezhilarasi2008@ymail.com, tvsudharsan@rediffmail.com
K.G. Subramanian

School of Computer Sciences, Universiti Sains Malaysia
11800 Penang, Malaysia
email: kgsmani1948@yahoo.com
Daniel Breaz
Department of Mathematics, "1 Decembrie 1918" University of Alba Iulia Alba-Iulia, Romania
email:dbreaz@uab.ro

